All the diagonal elements of the matrix are 1 ( the elements are compared to themselves). Comparisons in only the upper triangular matrix are done; values in the lower triangle matrix are the reciprocal of upper triangular matrix. 矩阵的对角元素全为1(元素与其自身相比)只需要对上三角矩阵进行对比,下三角矩阵的值是上三角值的倒数。
Analysis of Gun Bore Image Based on Grey Level Co-occurrence Triangular Matrix 基于灰度共生三角阵的炮膛图像分析
On Morphic Property of 3 × 3 Triangular Matrix Ring 三级三角矩阵环的morphic性
A substance is through the primary transformation into an upper triangular matrix, the transformation matrix is a unit lower triangular matrix. 实质上是将A通过初等行变换变成一个上三角矩阵,其变换矩阵就是一个单位下三角矩阵。
The Zero Divisor Graphs of Z_n [ ω] and Formal Triangular Matrix Rings Zn[ω]与形式三角矩阵环的零因子图
The elimination process leading to the eventual formation of an upper triangular matrix is then carried out. 于是进行导致最后形成一个上三角形矩阵的消去手续。
Additive maps preserving the lattices of invariant subspaces on upper triangular matrix algebras 上三角矩阵代数上的保不变子空间格映射超不变子空间的紧摄动
The Construction of Gorenstein Projective Modules over Upper Triangular Matrix Artin Algebras 上三角矩阵Artin代数上Gorenstein投射模的构造
Armendariz and semicommutative properties of a class of upper triangular matrix rings; 同时,关于形式三角矩阵环也有类似的同构式。
It is proved that the sum of squared residuals for each AR order can be obtained by the main diagonal elements of upper triangular matrix, so the column by column procedure can be used to develop a recursive algorithm for AR modeling and spectral estimation. 可以证明,由上三角阵的主对角元素便可得到各阶AR模型的残差平方和。因此用逐列处理的方法可以构成AR模型化与谱估计的递推算法。
Convergence of power of a fuzzy triangular matrix Fuzzy三角矩阵的幂收敛性
In chapter 3, we will consider the automorphisms of triangular matrix algebras over commutative semirings. 第三章主要考虑交换半环上n阶三角矩阵代数的自同构。
The Properties of Lower Triangular Matrix Associated with Polynomial of Binomial Type 具有二项式型多项式下三角矩阵的性质
In this Paper, we discuss the properties of formal triangular matrix rings from two different angles. 本文从两个不同角度对形式三角矩阵环进行讨论、研究。
The proposed algorithm is suitable for large scale triangular matrix parallel computation. 该算法适用于大规模三对角矩阵的并行计算。
At each iteration, triangular factorization of the coefficient matrix is carried out by performing QR decomposition on two partitioned matrices and by solving a set of linear equations involving a sparse triangular matrix. 在每次迭代中,通过对两个分块矩阵的QR分解和一个稀疏三角线性方程组的求解,实现了系数矩阵的三角分解。
This article gives a Formula for finding inverse matrices of upper ( down) triangular matrix. 本文给出了上(下)三角形矩阵的一个求逆公式。
In this paper, the storage mapping of triangular matrix is discussed. 对三角矩阵的存储映射问题进行了讨论。
We study in this paper the structure of additive mappings on triangular matrix algebras which preserve commutativity. 本文研究了三角矩阵代数上保持交换性的可加映射的结构。
Maps on 2 × 2 Upper Triangular Matrix Algebras Preserving Idempotence over Fields 域上2×2上三角矩阵代数保幂等的映射
A Study on the Triangular Matrix Preconditioner of the Conjugate Gradient Method for Harmonic Electromagnetic Problems 时谐电磁场问题共轭梯度法三角阵预处理器的研究
Topology information of network structure was also obtained through converting an incidence matrix into standard triangular matrix. 网络关联矩阵经过矩阵变换形成三角矩阵,可以反映网络拓扑结构;
The inverses of a class of special infinite matric over a division ring is studied. Some sufficient conditions for the existence of left ( or right) and two-side inverses of infinite upper triangular matrix on a division ring are proved by compactness argument. 研究了除环上一类特殊无限方阵的逆方阵.用紧致性论证给出了除环上无限上三角阵具有左(右)逆和双侧逆方阵的充分条件。
The key of schur method is to exchange the diagonal blocks in the upper pseudo-triangular matrix. Schur向量法的关键在于交换伪上三角形矩阵对角线上的对角块的位置。
As a consequence we can decompose a positive definite matrix as product of two triangular matrices, and decompose a non-singular matrix as product of a orthogonal matrix with a upper triangular matrix. 作为推论,我们可以利用矩阵的初等变换把一个正定矩阵分解为两个三角矩阵的积,把一个非奇异实矩阵分解为一个正交矩阵与一个上三角矩降的乘积。
The Inverse Matrix of Pascal's Triangular Matrix and an Expression of Additive Set Function Pascal三角形矩阵的逆及一个可加集函数关系式
In this paper we investigate the matrix perturbation analysis of eigenvalue perturbation theory. Applying previous results, some new perturbation bounds are presented for block upper triangular matrix and reducible matrix. 本文主要研究矩阵扰动分析问题中的特征值扰动理论,通过利用已有的一些结果,来得到矩阵子块的扰动界,进而得到关于分块上三角矩阵和可约矩阵的新的扰动界。
In the proposed approach, all the signal information is focused in the upper-left triangular matrix, so it improves the robustness to noise. 在改进的传播算子方法中,信号的有用信息都集中在一个上三角矩阵中,提高了算法对噪声的稳健性。
Block upper triangular matrix has an important significance in practice. 第三章主要讨论分块上三角矩阵特征值的扰动,分块上三角矩阵是一类常见的矩阵,在实践中有着重要的意义。
The high-dimensional mixing matrix are factorized into triangular matrix and unitary matrix, which further turns into a series of low-dimensional sub-problems with one or two unknown parameters. 通过矩阵分解将高维混合矩阵分解为上、下三角矩阵和酉矩阵,在此基础上进一步将各矩阵的求解转化为一系列只含一个或两个未知参数的低维子问题。